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Testing an Increasing Failure Rate Average Distribution with
Censored Data
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University of North Carolina at Charlotte and
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Summary. A life distribution F is an increasing failure rate average (IFRA) if F(bz) =
={F(x)}®’, 0<b=<1, 2 =0, where F =1 —F. For testing Ho: F is exponential, versus Hy: ¥
is IFRA, but not exponential based on randomly censored data, we propose a test statistic
JE(b) =fF ,(bx) dF ,(x), where F, is the KaPLAN-MEIER product limit estimator of F. The
asymptotic normality of JZ(b) is established and an asymptotically distribution-free test

is obtained. The efficiency loss due to censoring is studied compared to DesapaNDE’S (1983)

4Ne e 1088 due 1o censoring 1s studlied compar SHPANDE

test for uncensored case. The asymptotic relative efficiency with respect to Crew, Hor-

LANDER and LANGBERG'S (1983) test is shown to be reasonably high.

T o e Tl A
NEY Wworas. ASylll

1. Introduction

A life distribution function (d.f.) ¥ such that F(z)=0 for <0, is an increasing

failure rate average (IFRA) if ( 1) log F(t) is increasing in >0, or equivalently

t
if and only if, for =0, 0<b<1,

F(bx)=(F(x)), (1.1)

where F(x)=1—F(x) (see, e.g., BArRLow and PROSCHAN (1975), p. 84). The equa-

lity in (1.1) holds if and only if ¥ is an exponential distribution. Let Xy, Xoy oo, X

be a random sample of size n from a continuous life d.fF. For any fixed b,
(

\
DesupPaNDE (1983) proposed a statistic to test Ho: F(x)=1—exp i——%}, =0,

=0 (u, unspecified) versus the alternative Hy: F belongs to the IFRA class, but
not exponential, by considering the parameter

0
If G, denotes the empirical distribution function, then My(Gy) is equivalent to the
U-statistic

Tnlb) = —

= I(X;=bX;),
""”("’"—1)1§,-¢Zj7§" ( = 7)

where I(4) denotes the indicator function of the set 4. DESHPANDE (1983) shows

that the limiting distribution of ! 2{J w(b) — My(F)} is N(0,4C1), where under Hy

1 b 1 2 (1—b) 2b 4 }
= — - - 1.2
e 4{1+b+2+2b+1 b+1 2+b+1 (b+1)2 (1.2)




23: 05 22 Cctober 2010

Downl oaded By: [Janmmal anadaka, S. Rao] At:

280 : statistics 20 (1989) 2

and computes the PirMAN’s asymptotic relative efficiencies of J,(b) relative to the
tests proposed by HoLLANDER and PROSCHAN (1972) and BICKEL and DorsuM
(1969) for three parametric families of distributions within the IFRA class.

In this paper, a test statistic is proposed to test Hy versus H; with randomly
censored data. Briefly the set up is as follows. Let X3, Xs, ... be independent iden-
tically distributed: (i.i.d.) random variables (r.v.’s) having a common continuous
life d.f.F. Let Y1, Yo, ... beii.d. r.v.’s having a common continuous d.f.H, which
is unknown and is treated as a nuisance parameter. Throughout, it is assumed
that X’s and Y’s are mutually independent and the pairs (X3, Y1), (Xs, Y3), ...
are defined on a common probability space (2, 8, P). For i=1, ..., n, let Z;=
=min (X;, Y;) and §;=1 (X;=7Y;). Using the censored data (Z;, d;), 1=1, 2, ..., n,
for a fixed b, a test is proposed to reject Hy in favor of H; for large values of

J(b) = fﬁn(bx) dF.(x) .
0

Here F', is the Karran-MEerer (Kaprax and MEIER (1958)) product limit estima-
tor of ¥ defined by
= J — | n=i %® fi ey
Fpz)=1—Llz)= o (1.3)
{Z:Z(l)é.’b) n=tT

whereZg)<... <Z(n)jdenote the ordered Z’s and 8¢y, .-, 6(n) are the §’s correspond-
ing to Zqy, ..., Z), respectively. The choice of b in J7(b) is discussed in Section 3.
For computational purposes J5(b) may be written as

n
)= ] FulbZ ) AFw(Z ) ,
P

where

dFu(Z )y =FulZ 1)) — FulZp) -

In Section 2, the asymptotic normality of the sequence n'/*{J5(b) — My(F)} is
established under the following assumptions of CHEN, HOLLANDER and LANGBERG

T PR

(abbreviated as CHL ){(1983).

(A.1) The supports of ¥ and H are equal to [0, =),
and
(A.2) sup {[F(x)*[H(x)]2, €[0, <)} <o, forsome O0-<e<1.

Proposition (1.1) (Gr (1983)). Assumptions (4.1) and (4.2) imply that the se-
quence of processes {£n(t)=n"*(Fn(t)—F(t)), t€[0, =]} converges weakly to a
GavUssian process with mean ze-o and covariance kernel given by (2.1).

Note that the condition (A.2), as discussed in CHL (1983) restricts the amount
of censoring allowed in the model. In the sequel, the test which rejects Ho for large
values of J5(b) is referred to as the TFRA test.

The null asymptotic mean of J5(b) is b_-ll-i’ independent of the nuisance para-
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meters g and H. But, the null asymptotic variance of J3,(b) depends on y and H
and must be estimated from the data. Using its consistent estimator 2 an asymp-
totically distribution-free test is obtained which is also consistent against all
continuous TFRA alternatives. In Section 3, a measure of the loss of efficiency due
to censoring is derived using DESHPANDE'S (1983) test and its generalization to
the censored model proposed herein. It is shown that the IFRA test has fairly
high efficiency when compared with CHL (1983) test. We also find the value of
b which maximizes the efficacy (with respect to Weibull alternatives) of J7(b),
for any given level of censoring. This section also contains an application of the
IFRA test to some survival data and Pirmax’s relative efficiency calculations.

2. Asymptotic normality and consisteney

In this section, first the asymptotic normality of J§(b) is established. Also, it is
shown that the IFRA test is consistent against all continuous IFRA alternatives
under suitable regularity conditions. Our approach is parallel to that o
(109‘2\ 1.0t I('H\- IPH\ H{f\ fc(n M\ and let !mli\ fcfn mn be a Gavussian Drocess

(R el AT U Ly Y

with mean zero and covariance kernel given by

K(> 1dF(z), =s=t<oo
E{p(t) ¢ }J [[ @ ARE), 0=e= (2.1)
0, s<0 or t<07

Unless otherwise specified, all limits are evaluated as n —o-, and all integrals range
over (0, o).

Theorem 2.1. Let 0<b<1. Under Assumptions (4.1) and (4.2) given in Section 1,
nH¥(JE(b) — My(F)) converges in distribution to a normal r.v. with mean zero and
variance oy given by

[t T /
si=[ [ €[ s00-s (5)][s09-¢ 5
Note that for n=1, 2, ...
'35 (0) — M ) Bui+ B,

S

)j dF(t) dF(s) . (2.2)

where

W2 By 1= [ (Fulbr) — F(ba) dFu@)— [ (Fald

z)—
PR, o= f {(F,,(bx)—F(bx))—(F ( )“ (;))}

Hence, the proof of Theorem 2.1 follows from Lemmas 2.
cation of SLUTSKY’s theorem.

Before stating Lemma 2.2, let us introduce some notation. Let D =D[0, «]=
={y: p is real valued, bounded and right-continuous function defined on (0, <),
with finite left hand limits at each ¢ €(0, =), and finite limits at ¢ =0, «}. Through-

F(bx)) dF(z)

and 2.8 and an appli-
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&

out D is viewed as a metric space with the SROROEOD metric. Further, let @1, Qg,
Q» and Q2 , be the probability measures on D induced by the processes {p(z), ¢

€10, =3} {00~ (1), €10, =1], {60, 1600, =} and {50 =tatb—0 1) 1€

[0, oc]} respectively.

Lemma 2.2. Assume (A.1) and (A4.2) hold. Then By, converges in probability to

. e e s ¢
zero and Bhp,s converges in distribution fo the r.v. (fp(bt) —¢ (5)) dF(t).
Proof. For yeD, and n=1, 2, ..., let

Cn,1(y f‘(/) (bx) dFp(x f!zp (bz) dF(x)

and
iw(bx)——‘ ?—\l] dF(x) .
L \/1

By Proposition 1.1, QL converges weakly to @'. This in turn implies that Qi
converges weakly to Q% By the path-continuity of the process {p(¢), £€[0, =]}
under (A.1), the support of @' and Q; coincide with the set of all continuous func-
tions in D. By the definitions of the mappings, we have Bp1=Cn1(Ea), Br,2=L(&7).
Thus, to obtain the desired results, it is enough to show, by the extended conti-
nuous mapping theorem, that for every sequence y, € D that converges to a conti-
nuous function y€ D, lim £ 1(wn) =0 w.p.1 and lim {(ya) ={(y).

Now, recall that if y,—~y in D and » is continuous, then this convergence is
uniform. (C.f. BILLINGSLEY (1968), p. 112.) Since lim {»,1(y) =0 w.p.1, by simple
integral evaluations we obtain that lim &y 1(9a) =0 w.p.1 and lim {(yz) =C(y)-

Temma 2.3. Assume (4.1) and (A.2) hold. Then By 2 converges in distribution to
@ normal r.v. with mean zero and variance oy given by (2.2).

Proof. From Lemma 2.2, B, 2 converges in distribution to the r.v. f [cp(bt)——
L

—@ ( )] dF(t), where {(p(bt) —@ (g) te([o, oo]} is a (Gaussian process. Also,
under (A.2), it is easy to check that o} <. Hence by the theory of Stochastic inte-

t
gration (see, e.g., PARZEN (1962), p. 78), f [(p(bt) —@ (;):I dF(¢) is normal r.v.
with mean zero and variance oj.
To estimate the null asymptotic variance of n'/*Jf(b) from the data, let

[220+1 (1452220 D) —2p200+2] | 0=z =1,

fo(z)=

(b+1)2

M,,:(f} ) 357 and Rult)== 3] I(Ze1)

i=1 i=tl vi=t
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Further, let
1

o) = [ folz) [K(=9Inz)]2dz, $€(0, =), (2.3)

0
= 6flfb(;:) [Ep (—3In2)] I (—Inz<d"1Z) d,

196(0’ oo)y n:1,2, veey
and finally, let
62 =0o(biin), m=1,2, ..

Note, that under Hy, o2 given by (2.2) reduces to ¢2(by). In particular, when there
is no censoring; that is when H(z)=1 for 2 =0, ¢2(bu) reduces to 4(;.

Theorem 2.4. Assume o2(9) is finite in the neighborhood of bu. Then under Hy,
62 is a consistent estimator of ay.

Theorem 2.5. Assume (A.1) and (A4.2) hold. Also assume that pz<oo and that

r‘lﬂ \

62(P) <oo in an interval thai coniains n= {P(&X1=7Y 1)} Y E(Z1). Then the aPpProTi-
we f e 1y, .
mate a-level test, which rejects Ho in favour of Hy if nt \ Jo(b)— an‘>z“ 8

. . . . b+l 1
consistent against all continuous IFRA alternatives.

The above results are similar to those of CHL (1983) and their proofs are
omitted.
For computational purposes 6, can be written as

b 1 —b)2 not 1 1 2((b+1
n {( 2L ————————-——{—exp(—(+)Z(,~))

3[0

G

13|z b +1) A (n=9) (n—j+1) (2 bl
b 2 (b+1) 20 (b+1)2 }
+5 exp (— 7 Z(J)) 551 &XP ( o Z@))
1 2 (b+1) b 2(b+1) 2
AR TR
rexp (=== 2 |

3. Efficiency loss due to censoring and ARE computations

Let F, be a parametric family within IFRA class with ¥, being exponential with
scale parameter 1. (For example, one such family is Weibull F(z) =1—exp {—z°},
#=1, x>0 and 9 =1). Consider the randomly censored model with #=F, and
with censoring distribution H, and the sequence of alternatives 79”:190-{——;: with
n
a>0. Let B,(Jx(b)) denote the power of the approximate a-level tests based on
Jn(b) and n observations in the uncensored model and let 8 (J%(b)) denote the
power of the approximate a-level test based on J;(b) and n observations from
censored model. Let n’ be a subsequence such that lim g,(J(b)) =lim B,(J7.(b)),
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where the limiting value is strictly between « and 1, and let k=lim -;i, The value

of (1 —k) can be taken as a measure of efficiency loss due to censoring. Since J,(b)
and J¢(b) have the same asymptotic means, k can be shown to be equal to the
40y
o¥(b)’
given by (2.3) which depends only on H and not on the parametric family F, of
IFRA alternatives. When the censoring distribution is exponential, H(x)=0 for
<0 and H(z)=1—exp {— Az} for =0 with the restriction 1<1 (so that Assump-
tion (A.2) is satisﬁed), the relative efficiency ey(J5(0), Ja(b)) becomes
4{y / i b 2b } \
(S a(b), J"(b)) b/(b+1)2/ {b (1-24) et 1 i1 2+b (1—=A)+1

relative efficiency ey(J5(b), Ja(b))= where #; is given by (1.2) and o2(b) is

The values of ey (J5(b), J n(b)) for different values of b and 2 are given in Table 1.

As is to be expected, as A tends to 0 (corresponding to the case of no censoring),
1.

eg(J5(b), Ja(b)) tends to

Table 1

Asymptotic efficiency of J5(b) relative to .J, (b) when H is exponential

with scale parameter 4.

b\ﬂ. .9 .75 5 .25 .1

.9 0.428 0.519 0.681 0.844 0.939
5 0.454 0.548 0.707 0.860 0.945
44 0.463 0.559 0.717 0.865 0.948
.25 0.508 0.612 0.764 0.890 0.955
.10 0.598 0.726 0.858 0.942 0.979

Again, let {Fs,} be a sequence of alternatives with 95 —290-%-7:, where @ is an
n

arbitrary positive constant and F,, is exponential with scale parameter 1. From
the results of CHL (1983) and Theorem 2.1, Pitman asymptotic relative efficiency
(ARE) of the IFRA test with respect of the CHL (1983) test is given by
¢ U'(ﬁ‘o)}z o%(1)

eF H(J (b) Jn) {A/(ﬂo) 0'?‘(b) ?
where, 62(b) and ¢%(1) are null asymptotic variances of nt2J5(b) and nY2J ¢ respec-
tively, when H is exponential with scale parameter 4,

M(®)= [ Fy(bx) dFy(2)

AB)=[[F, (x+y) dF,(x) dFy(y) ,

are the asymptotic means of JZ(b) and JJ respectively for the alternative ¥y and
M'(9o) (A'(Do)) is the derivative of M(8) (4(9)) with respect to #, evaluated at

®=o. Note that ey g(J5(b), J5) is the square of the ratio of the efficacies of J5(b)
and J¢ tests. Table 2 gives the values of b, say b-optimal, corresponding to the
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maximum Prrymax efficacy and efficiency of J;(b) test for Weibull family of distri-
butions. This b-optimal corresponds to the largest local power, that is, it maximizes
the probability of detecting H;, when it holds. Also observe that as the amount of
censoring increases, the optimal b-value in the above sense, decreases. This may
be explained by the fact that the optimal test makes up for the loss due to censoring,
by incorporating a larger number of observations from F, which corresponds to
the smaller 5-values. This is also reflected in the efficiency loss due to censoring,
considered in Table 1. The ARE values in Table 2 indicate that the IFRA test has
high efficiency when compared with CHL (1983) test, even for large values of 1
(corresponding to the case of heavy censoring). '

Table 2
The optimal b values for Weibull family of IFRA and NBU alternatives.

y) Weibull family ~ Weibull family  maximum er ual(JE(D), J5)

of IFRA of NBU- eff (J (b))

alternatives alternatives
0.0 0.44 0.5 1.1686015 1.007104
0.1 0.35 0.33 1.136877 1.019619
0.2 0.29 0.33 1.108099 1.038152
0.3 0.24 0.25 1.079102 1.062527
0.4 0.21 0.20 1.049277 1.092463
0.5 0.19 0.20 . 1017712 1.126 682
0.6 0.16 0.16 0.983271 1.163767
0.7 0.15 0.14 0.944116 1.198534
0.8 0.14 0.14 0.897054 1.221 266
0.9 0.14 0.14 0.837406 1.224 559

The second column, corresponding to the NBU alternatives, optimizes the
1
b values over the set {E’ k=23, }

From the above table it is clear that in the absence of censoring, one may
recommend JE(b)-test with 6=0.5 for NBU alternatives and J;(b)-test with
b=0.44 for IFRA alternatives. DESHPANDE (1983) recommends a b-value of 0.9
for IFRA alternatives. Although our computations do not justify that particular
value, one may note that the efficiencies corresponding to b=0.9 and b=0.44 are
not very different.

We now give an application of the IFRA test to some survival data. Table 2 of
HoruaNDER and PrROSCHAN (1979) contains an updated version of the data given
by Kozior and GreeN (1976). This data has been analyzed by many methods
(C.f. DorsuM and YANDELL (1984)). The data corresponds to 211 state IV prostate
cancer patients treated with estrogen in a Veterans Administration Cooperative
Urological Research Group study. At the March 1977 closing date there were 90
patients who died of prostate cancer, 105 who died of other diseases, and 16 still
alive. Those observations corresponding to deaths due to other causes and those
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corresponding to 16 survivors are treated as censored observations (losses). In
(1.8) Z(n) is treated as death (whether or not it actually is) so that §(») = 1. Further-
more, when censored observations are tied with uncensored observations, while
ordering Z;'s, the convention is to treat uncensored members of the tie as
preceding the censored members of the tie. For testing Hp versus H; for
the cancer data for 5=0.9 we obtain J$;;(0.9)=0.533 G211 =0.030465 and

(211)Y2 (Jzu( 9) — )0211__12 76. The one-sided P value is 1.4X10-37. Thus,

there is strong ev;dence that an IFRA distribution is preferable to an exponen-
tial distribution. A plot of the estimated average failure rate does not disprove
this conclusion.
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